41,009 research outputs found

    Presupernova evolution of accreting white dwarfs with rotation

    Full text link
    We discuss the effects of rotation on the evolution of accreting carbon-oxygen white dwarfs, with the emphasis on possible consequences in Type Ia supernova (SN Ia) progenitors. Starting with a slowly rotating white dwarf, we simulate the accretion of matter and angular momentum from a quasi-Keplerian accretion disk. The role of the various rotationally induced hydrodynamic instabilities for the transport of angular momentum inside the white dwarf is investigated. We find that the dynamical shear instability is the most important one in the highly degenerate core. Our results imply that accreting white dwarfs rotate differentially throughout,with a shear rate close to the threshold value for the onset of the dynamical shear instability. As the latter depends on the temperature of the white dwarf, the thermal evolution of the white dwarf core is found to be relevant for the angular momentum redistribution. As found previously, significant rotation is shown to lead to carbon ignition masses well above 1.4 Msun. Our models suggest a wide range of white dwarf explosion masses, which could be responsible for some aspects of the diversity observed in SNe Ia. We analyze the potential role of the bar-mode and the r-mode instability in rapidly rotating white dwarfs, which may impose angular momentum loss by gravitational wave radiation. We discuss the consequences of the resulting spin-down for the fate of the white dwarf, and the possibility to detect the emitted gravitational waves at frequencies of 0.1 >... 1.0 Hz in nearby galaxies with LISA. Possible implications of fast and differentially rotating white dwarf cores for the flame propagation in exploding white dwarfs are also briefly discussed.Comment: 22 pages, 16 figures, Accepted to A&

    A practical approach for the design of nonuniform lapped transforms

    Get PDF
    We propose a simple method for the design of lapped transforms with nonuniform frequency resolution and good time localization. The method is a generalization of an approach previously proposed by Princen, where the nonuniform filter bank is obtained by joining uniform cosine-modulated filter banks (CMFBs) using a transition filter. We use several transition filters to obtain a near perfect-reconstruction (PR) nonuniform lapped transform with significantly reduced overall distortion. The main advantage of the proposed method is in reducing the length of the transition filters, which leads to a reduction in processing delay that can be useful for applications such as real-time audio coding

    An LU implicity scheme for high speed inlet analysis

    Get PDF
    A numerical method is developed to analyze the inviscid flowfield of a high speed inlet by the solution of the Euler equations. The lower-upper implicit scheme in conjunction with adaptive dissipation proves to be an efficient and robust nonoscillatory shock capturing technique for high Mach number flows as well as for transonic flows

    Detecting multiple authorship of United States Supreme Court legal decisions using function words

    Get PDF
    This paper uses statistical analysis of function words used in legal judgments written by United States Supreme Court justices, to determine which justices have the most variable writing style (which may indicated greater reliance on their law clerks when writing opinions), and also the extent to which different justices' writing styles are distinguishable from each other.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS378 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Coding overcomplete representations of audio using the MCLT

    Get PDF
    We propose a system for audio coding using the modulated complex lapped transform (MCLT). In general, it is difficult to encode signals using overcomplete representations without avoiding a penalty in rate-distortion performance. We show that the penalty can be significantly reduced for MCLT-based representations, without the need for iterative methods of sparsity reduction. We achieve that via a magnitude-phase polar quantization and the use of magnitude and phase prediction. Compared to systems based on quantization of orthogonal representations such as the modulated lapped transform (MLT), the new system allows for reduced warbling artifacts and more precise computation of frequency-domain auditory masking functions

    The Evolution of Helium Star Plus Carbon-Oxygen White Dwarf Binary Systems and Implications for Diverse Stellar Transients and Hypervelocity Stars

    Full text link
    Helium accretion induced explosions in CO white dwarfs (WDs) are considered promising candidates for a number of observed types of stellar transients, including supernovae (SNe) of Type Ia and Type Iax. However, a clear favorite outcome has not yet emerged. We explore the conditions of helium ignition in the white dwarf and the final fates of helium star-WD binaries as function of their initial orbital periods and component masses. We compute 274 model binary systems with the Binary Evolution Code (BEC), where both components are fully resolved. Stellar and orbital evolution is computed simultaneously, including mass and angular momentum transfer, tides, and gravitational wave emission, as well as differential rotation and internal hydrodynamic and magnetic angular momentum transport. We find that helium detonations are expected only in systems with the shortest initial orbital periods, and for initially massive white dwarfs (MWD > 1.0 MSun ) and lower mass donors (Mdonor < 0.8 MSun), with accumulated helium layers mostly exceeding 0.1 MSun. Upon detonation, these systems would release the donor as a hypervelocity pre-WD runaway star, for which we predict the expected range of kinematic and stellar properties. Systems with more massive donors or initial periods exceeding 1.5 h will likely undergo helium deflagrations after accumulating 0.1 - 0.001 MSun of helium. Helium ignition in the white dwarf is avoided in systems with helium donor stars below - 0.6 MSun, and lead to three distinctly different groups of double white dwarf systems. The size of the parameter space open to helium detonation corresponds to only about 3 % of the galactic SN Ia rate, and to 10 % of the SN Iax rate, while the predicted large amounts of helium (>0.1 MSun) in progenitors cannot easily be reconciled with observations of archetypical SN Ia. ...Comment: Accepted for publication in A&A, 28 pages, 16 figures, 6 table
    corecore